Part Number Hot Search : 
HMC29208 AD7724 DG441 MA650 C7043 SD850YS FMMT589 CE71L8
Product Description
Full Text Search
 

To Download IRF3707ZCSTRRP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 05/12/08 irf3707zcspbf irf3707zclpbf hexfet   power mosfet notes   through  are on page 11 applications benefits  low r ds(on) at 4.5v v gs  ultra-low gate impedance  fully characterized avalanche voltage and current  high frequency synchronous buck converters for computer processor power  lead-free d 2 pak irf3707zcspbf to-262 i rf3707zclpbf absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v a i d @ t c = 100c continuous drain current, v gs @ 10v i dm pulsed drain current p d @t c = 25c maximum power dissipation w p d @t c = 100c maximum power dissipation linear derating factor w/c t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case CCC 2.653 c/w r ja junction-to-ambient (pcb mount)  CCC 40 300 (1.6mm from case) -55 to + 175 10 lbf  in (1.1 n  m) 57 0.38 28 max. 59  42  230 20 30 v dss r ds(on) max qg 30v 9.5m 9.7nc  downloaded from: http:///

 2 www.irf.com s d g static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 30 CCC CCC v ? v dss / ? t j breakdown voltage temp. coefficient CCC 0.023 CCC mv/c r ds(on) static drain-to-source on-resistance CCC 7.5 9.5 m ? CCC 10 12.5 v gs(th) gate threshold voltage 1.35 1.80 2.25 v ? v gs(th) / ? t j gate threshold voltage coefficient CCC -5.3 CCC mv/c i dss drain-to-source leakage current CCC CCC 1.0 a CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 gfs forward transconductance 81 CCC CCC s q g total gate charge CCC 9.7 15 q gs1 pre-vth gate-to-source charge CCC 2.8 CCC q gs2 post-vth gate-to-source charge CCC 1.0 CCC nc q gd gate-to-drain charge CCC 3.4 CCC q godr gate charge overdrive CCC 2.5 CCC see fig. 16 q sw switch char g e (q gs2 + q gd ) CCC 4.4 CCC q oss output charge CCC 6.2 CCC nc t d(on) turn-on delay time CCC 9.8 CCC t r rise time CCC 41 CCC t d(off) turn-off delay time CCC 12 CCC ns t f fall time CCC 3.6 CCC c iss input capacitance CCC 1210 CCC c oss output capacitance CCC 260 CCC pf c rss reverse transfer capacitance CCC 130 CCC avalanche characteristics parameter units e as si n gl e p u l se a va l anc h e e ner gy mj i ar a va l anc h e c urrent   a e ar r epet i t i ve a va l anc h e e ner gy  mj diode characteristics parameter min. t y p. max. units i s continuous source current CCC CCC 59  (body diode) a i sm pulsed source current CCC CCC 230 (body diode)  v sd diode forward voltage CCC CCC 1.0 v t rr reverse recovery time CCC 14 21 ns q rr reverse recovery charge CCC 5.2 7.8 nc mosfet symbol v gs = 4.5v, i d = 17a  CCC v gs = 4.5v typ. CCC CCC i d = 17a v gs = 0v v ds = 15v t j = 25c, i f = 17a, v dd = 15v di/dt = 100a/s  t j = 25c, i s = 17a, v gs = 0v  showing the integral reverse p-n junction diode. v ds = v gs , i d = 25a v ds = 24v, v gs = 0v v ds = 24v, v gs = 0v, t j = 125c clamped inductive load v ds = 15v, i d = 17a v ds = 16v, v gs = 0v v dd = 15v, v gs = 4.5v  i d = 17a v ds = 15v conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 21a  v gs = 20v v gs = -20v conditions 5.7 max. 4023 ? = 1.0mhz downloaded from: http:///

 www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 9.0v 7.0v 5.0v 4.5v 4.0v 3.5v bottom 3.0v 30s pulse width tj = 25c 3.0v 0.1 1 10 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 30s pulse width tj = 175c 30v vgs top 10v 9.0v 7.0v 5.0v 4.5v 4.0v 3.5v bottom 3.0v 2 3 4 5 6 7 8 v gs , gate-to-source voltage (v) 10.0 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 10v 30s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 42a v gs = 10v downloaded from: http:///

 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0.0 0.5 1.0 1.5 2.0 v sd , source-to-drain voltage (v) 0.01 0.10 1.00 10.00 100.00 1000.00 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operation in this area limited by r ds (on) 100sec tc = 25c tj = 175c single pulse 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 024681 01 2 q g total gate charge (nc) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v v ds = 15v i d = 17a downloaded from: http:///

 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 i d , d r a i n c u r r e n t ( a ) limited by package -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 1.163 0.0002571.073 0.001040 0.419 0.003089 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci= i / ri ci= i / ri downloaded from: http:///

 6 www.irf.com d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 13. gate charge test circuit fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 12c. maximum avalanche energy vs. drain current r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 14a. switching time test circuit fig 14b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 25 50 75 100 125 150 175 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 4.5a 6.8a bottom 23a downloaded from: http:///

 www.irf.com 7 fig 15. 
 



   for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     fig 16. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr downloaded from: http:///

 8 www.irf.com control fet  

   

      
 
   
 
 
         
   
   
 
  !"    
 #
 $  
 %& !" 

  
    #  
  


       
 
  
    #' p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) () + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? "     (
  

          
  %& !" 
  
      


  
   

     %& !" 
  
 "   
   
 
 
    

  
              )    

  


  #
 
  






   
      


   

* 

 

   
   
   % +      
 
    
         
  


 

 
 

  
 %& !"   # 
    #  ,         #
    
 
  
  
-   .  
 /         
 #
   #  
  
 synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be-tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca-pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic downloaded from: http:///

 www.irf.com 9 &'("  )*+,,(-./0/)*( 1&,)')&*)*2)3+'(,
(+2%4((  
  
  




  

       

  
                  
     
   

 
    
 dimensions are shown in millimeters (inches) note: for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

 10 www.irf.com  
  
               !" ! # $% $&'  (    
 ) (    *+* 
  , -  

  .    /    0   0 ) 
      
     0
 1 2  /  )  &  /   
  .    /  
  or to-262 part marking information to-262 package outline  igbt 1- gate2- collector 3- emitter note: for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

 www.irf.com 11 data and specifications subject to change without notice. this product has been designed and qualified for the consumer market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 05/2008 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063)1.50 (.059) 4.10 (.161)3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. d 2 pak tape & reel infomation dimensions are shown in millimeters (inches) 
  repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 0.15mh, r g = 25 ? , i as = 23a.  pulse width 400s; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  this is applied to d 2 pak, when mounted on 1" square pcb (fr- 4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994.  calculated continuous current based on maximum allowable junction temperature. package limitation current is 42a. note: for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRF3707ZCSTRRP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X